How round are the complementary components of planar Brownian motion?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Potentials and Planar Brownian Motion

In Section 5, we saw that for a Brownian motion process in n _ 3 dimensions, P (limtxIX, = o0) = 1 for all x. In sharp contrast to this situation, a planar Brownian motion is certain to hit any nonpolar set. THEOREM 8.1. Let B be a Borel set. Then PX(VB < cX) is either identically 1 or identically 0. PROOF. A simple computation shows that for any x e R2, 1' p(s, x) ds T co as t T oc. Thus, for ...

متن کامل

Multiple intersection exponents for planar Brownian motion

Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...

متن کامل

Intersection Exponents for Planar Brownian Motion

We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.

متن کامل

Conditioned Brownian motion in planar domains

We give an upper bound for the Green functions of conditioned Brownian motion in planar domains. A corollary is the conditional gauge theorem in bounded planar domains. Short title: Conditioned Brownian motion AMS Subject Classification (1985): Primary 60J50; Secondary 60J45, 60J65

متن کامل

On the most visited sites of planar Brownian motion

Let (Bt : t ≥ 0) be a standard planar Brownian motion. Dvoretzky, Erdős and Kakutani (1958) first showed that, almost surely, there exist points x in the plane such that {t ≥ 0: Bt = x}, the set of times where the Brownian path visits x, is uncountably infinite. Modern proofs of this fact are given in Le Gall (1987) and Mörters and Peres (2010). The result naturally raises the question: How lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

سال: 2019

ISSN: 0246-0203

DOI: 10.1214/18-aihp902